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We present a theory of tunneling spectroscopy of spin-selective Aharonov-Bohm oscillations in a lateral
triple quantum dot molecule. The theory combines exact treatment of an isolated many-body system with the
rate equation approach when the quantum dot molecule is weakly connected to the leads subject to arbitrary
source-drain bias. The tunneling spectroscopy of the many-body complex is analyzed using the spectral func-
tions of the system and applied to holes in a quantum dot molecule. Negative differential conductance is
predicted and explained as a result of the redistribution of the spectral weight between transport channels. It is
shown that different interference effects on singlet and triplet hole states in a magnetic field lead to spin-
selective Aharonov-Bohm oscillations.
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I. INTRODUCTION

Quantum dot �QD� systems are artificial quantum me-
chanical systems with great controllability of the electronic,
spin, and transport properties.1 The occupancy and spins of
electrons in single and coupled semiconductor QD systems
can be controlled electrostatically.2–7 In lateral structures
where QDs are defined by lateral gates on top of a hetero-
junction containing two-dimensional electron gas �2DEG�,
the confinement potentials and tunneling barriers can be eas-
ily tuned by applying voltages to the gates. Coupled QD
systems, where the coherence of different quantum states can
play an important part, are one of promising candidates for
realizing quantum information and computation devices.8–11

Coulomb interactions in such small systems become more
important and QD networks offer great flexibility for study-
ing many-body effects in a very controllable manner. Trans-
port through a strongly interacting QD system leads to many
interesting phenomena such as Coulomb blockade1 due to
the strong Coulomb interaction and spin blockade in a
double QD system with an electron localized in one of the
dots.12,13 High source-drain bias transport can be used as a
spectroscopic tool for the interacting many-body system.14,15

In triple quantum dot �TQD� systems, the electronic and
spin properties depend on the topology of the system.16 In-
terference effects are expected in triangular TQD
molecules17 and coherent transport was experimentally
observed.7,18 We study a TQD system which is connected to
two leads �Fig. 1�, with dot 1 connected to the left lead and
dot 3 connected to the right lead. In linear response regime,
for an electron to move from one lead to the other we need
three different charge configurations �N1 ,N2 ,N3�,
�N1+1 ,N2 ,N3�, and �N1 ,N2 ,N3+1� in terms of the num-
ber of electrons in each dot to be on resonance. That
is, E�N1 ,N2 ,N3�+�0=E�N1+1 ,N2 ,N3�=E�N1 ,N2 ,N3+1�
where �0 is the chemical potential of the leads. This allows
an electron to move from the left lead to dot 1, to dot 3, and
finally to the right lead. If dots are not on resonance, a finite
bias must compensate for the deviation from the resonance.
If another charge configuration �N1 ,N2+1 ,N3� with the extra

electron in dot 2 is also on resonance, we have four degen-
erate charge configurations and we define this point as a
quadruple point �QP�. If the constituent QDs are strongly
connected, we can not use simple classical arguments for the
transport and QP is defined as a point in parameter space
where four different charge configurations have the same
probabilities. At QPs, the extra electron can move along two
alternative paths before it escapes and this leads to the
Aharonov-Bohm �AB� oscillations19 in the presence of a per-
pendicular magnetic field. With empty systems, we can use
single-particle picture for the transport and a theoretical cal-
culation for empty TQD using transfer matrix was recently
reported.20 For the transport involving states with more than
one electron, the strong Coulomb interaction and the corre-
lation between different charge configurations must be taken
into account. A rate equation for the probabilities of each
quantum many-body state of the system has been used to
describe the transport through strongly interacting quantum
systems weakly connected to the leads.21–30 In our previous
work,31 it was shown that the interplay between the AB os-
cillations and spin blockade in a TQD around a QP with an
electron trapped in dot 2 leads to spin-selective AB oscilla-
tions. Around this QP, the singlet states show strong AB
oscillations while AB oscillations for triplet states are sup-
pressed. Combined with the Zeeman splitting, these different
behaviors of singlet and triplet states result in repeated peaks
of spin-down current at lower magnetic fields and large
spin-up current at high magnetic fields.

In the current work, we describe in detail how we calcu-
late the transport through a strongly correlated many-body
system based on rate equation approach in the sequential
tunneling regime. Recently, there has been a lot of work on
the transport through TQD systems in a variety of different
configurations, particularly in the Kondo regime.32–38 For the
TQD molecule experimentally realized6 that we use as our
typical model, the intradot Coulomb repulsion is much larger
than the interdot tunneling and the dot-lead tunneling is even
smaller than the interdot tunneling. The Kondo temperature
in this parameter range is estimated to be extremely small
and higher order processes such as cotunneling will be ne-
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glected in the current work. A detailed, self-contained
method of the transport calculation in the sequential tunnel-
ing regime will be presented. Useful concepts for describing
multichannel transport will be defined and used to explain
various transport phenomena such as negative differential
conductance and spin-selective AB oscillations. Negative
differential conductance was observed and explained in
double quantum dot systems near spin-blockade regime12,30

and is also expected in TQD systems.39

We will focus on a TQD system which contains one or
two holes. A hole is defined as absence of electron with
respect to the fully occupied TQD with six electrons. In a
resonant TQD where all three dots are identical, the two-hole
system has spin-triplet ground state while two-electron sys-
tem has spin-singlet ground state.16,17 The singlet-triplet gap
is proportional to the interdot tunneling. In other words, the
interdot tunneling in triangular TQD favors spin-singlet for
two-electron system and favors spin-triplet for two-hole sys-
tem. Two-hole system in TQD has a very interesting property
that the spin structure of the system can be tuned by gate
voltages, which is in contrast to the two-electron system
where the ground state is always spin singlet. By lowering
the level energy of dot 2 �or raising the hole level energy of
dot 2�, two holes are localized in dot 1 and 3, and the ground
state changes from triplet to singlet.40 On the other hand,
when we lower the hole level of dot 2, we can permanently
trap one hole in dot 2 with the additional hole moving around
the TQD. The four charge configurations with a trapped hole
in dot 2 in terms of electron occupation numbers are
�1,1,2�,�2,0,2�,�2,1,1�, and �2,1,2�. As is shown later, at the
QP where these configurations are degenerate, spin singlet
and triplet states of two-hole system are degenerate. This
degeneracy between singlet and triplet states implies that the
spin state is very sensitive to the external environment such
as nuclear spin, and it could be used for, e.g., probing nuclear
spins. We investigate the transport around this QP in the
presence of a perpendicular magnetic field.

The plan of the paper is as follows. In Sec. II, we describe
our model Hamiltonian for the TQD, the leads, and the cou-
pling between the TQD and the leads. The current is ex-
pressed using electron and hole spectral functions and master
equation for the probabilities of each state of the system will
be given. In Sec. III, general conditions for transport through
a quantum many-body system in the sequential tunneling
regime are discussed in terms of transport channels, active
state and trap state. In Sec. IV, using the methods developed
in Sec. II, numerical results in a QP with a trapped hole are
presented. Negative differential conductance and spin-

selective AB oscillations are predicted and discussed in
detail. A brief summary will be given in Sec. V.

II. METHOD

A. Model

We have shown previously16,17 that the electronic proper-
ties of the TQD molecule with few confined electrons
�N=1 to 6� can be understood in the frame of the Hubbard
model with one orbital per dot. The effects of higher orbitals
can be effectively incorporated into the Hubbard model
parameters.40 The Hamiltonian of the TQD subject to a uni-
form perpendicular magnetic field, B=Bẑ, is given by

ĤTQD = �
i=1

3

�
�

�i�di�
† di� + �

i�j
�
�

tij�B�di�
† dj� + �

i

Uin̂i↓n̂i↑

+
1

2�
i�j

Vij�̂i�̂ j , �1�

where the operators di� �di�
† � annihilate �create� an electron

with spin �= �1 /2 on orbital i �i=1,2 ,3�. n̂i�=di�
† di� and

�̂i= n̂i↓+ n̂i↑ are, respectively, the spin and charge density on
orbital level i. Each dot is represented by a single orbital
with energy �i�=�i+g��BB�+�0, with g� being the effective
Landé g factor and �B being the Bohr magneton. �0 is an
overall energy shift with respect to the Fermi level of the
leads which can be changed by applying proper voltages to
external gates. Notice that �0 changes the energy differences
between states with different number of electrons, but not the
energy differences between the states with the same number
of electrons. Ui is the on-site Coulomb repulsion of orbital i
and Vij is the direct Coulomb interaction between two elec-
trons in orbitals i and j. The effects of the perpendicular
magnetic field on the hopping matrix elements are accounted
for by the Peierls phase factors41,42 tij�B�= tije

2�i�ij. For the
three quantum dots located in the corners of an equilateral
triangle we have �12=�23=�31=−� /3 and � ji=−�ij, where
�B=BA /�0 is the number of magnetic flux quanta threading
the system, with A being the area of the triangle and �0
=hc /e being the magnetic flux quantum. The energy spec-
trum of the isolated TQD in the presence of the magnetic
field is obtained by the configuration-interaction method.17

The TQD system �D� is connected to leads �r=L ,R� on
both sides with left lead connected to dot 1 and right lead to
dot 3 �Fig. 1�. We will use noninteracting one-dimensional
chains as our model for leads �see Appendix A for explicit
expressions for the eigenstates and eigenvalues of the leads�,
which are connected to the TQD by

ĤrD = �
�

�
k

�t̃rD�k�ck�
† di0� + H.c.� , �2�

where k is the eigenstates of the lead r, t̃rD�k� is the coupling
strength between the lead state k and dot i0=1 �i0=3� for r
=L �r=R�, given in Eq. �A6�. We will assume that tunnel
coupling trD between the lead site and the QD is very small
that we can use sequential tunneling picture described in the
following.

FIG. 1. Schematic of a triple quantum dot molecule connected
to leads. t’s are the tunneling matrix elements that connect two
different sites. Each lead is modeled by a semi-infinite noninteract-
ing chain which is connected to the TQD at one end.
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B. Transport theory and master equation

We obtain the many-body eigenstates of the TQD mol-
ecule by solving Eq. �1� exactly for N=0 to 6. The system of
isolated TQD molecule and two leads is our unperturbed
system, and Eq. �2� is used as the perturbation causing the
transition between different states. The tunneling between
the leads and the quantum system is assumed to be small so
that we can consider only sequential tunneling transport.

The net current of electrons with spin � from the lead r to
TQD is

Ir→D
� = �− e���r→D

� − �D→r
� � , �3�

where �r→D
� is the rate of an electron with spin � moving

from lead r to the TQD, which is given by

�r→D
� = �

N=0

5

�
	N

�
	N+1

fr�E	N+1

D − E	N

D �P	N

r

��	N,	N+1� , �4�

and �D→r
� is the rate of an electron with spin � moving from

TQD to lead r which is given by

�D→r
� = �

N=0

5

�
	N

�
	N+1

�1 − fr�E	N+1

D − E	N

D ��P	N+1
r
��	N,	N+1� .

�5�

Here fr���=1 / �exp���−�r� /kBT�+1� is the Fermi-Dirac dis-
tribution function with respect to the chemical potential �r of
lead r and the temperature T, and P	N

is the probability that
the TQD is in N-electron state 	N with energy E	N

D .

r

��	N ,	N+1� is the transition rate of the TQD state from 	N
to 	N+1 by adding an electron with spin � from the lead r to
the TQD orbital i0 which, by Fermi’s golden rule, is


r
��	N,	N+1� =

2�

�
�		N+1�di0�

† �	N
�2�
k

�t̃rD�k��2

�
�E	N+1

D − E	N

D − �k
r� . �6�

The transition rate from 	N+1 to 	N is also given by the same

r

��	N ,	N+1� and it describes the coupling between 	N and
	N+1 by the connection to the lead r. Individual transitions
are assumed to be independent and correlation between dif-
ferent many-body states is neglected in this formalism.43 The
current of electrons with spin � from the lead r to TQD can
be expressed as

Ir→D
� =

− e

�
�
N=0

5

�
k

�t̃rD�k��2�fr��k
r�Ae�N;i0,�;�k

r�

− �1 − fr��k
r��Ah�N + 1;i0,�;�k

r�� , �7�

where

Ae�N;i,�;�� = 2��
	N

�
	N+1

P	N
�		N+1�di�

† �	N
�2

�
�E	N+1

D − E	N

D − �� , �8�

Ah�N + 1;i,�;�� = 2��
	N

�
	N+1

P	N+1
�		N�di��	N+1
�2

�
�E	N+1

D − E	N

D − �� . �9�

We refer to Ae and Ah, respectively, as the electron and hole
spectral function of the TQD molecule. These spectral func-
tions contain information on the intrinsic properties of the
TQD. In transport, what is measured is essentially these
spectral functions weighted with the distribution functions of
the leads fr and the lead-dot coupling t̃rD�k�. Note that the
probabilities of each state are determined by the master equa-
tion described below, and therefore the spectral functions
depend on the bias. The first term in Eq. �7� describes an
electron moving from the lead r to the TQD system increas-
ing number of electrons in the TQD from N to N+1. The
second term describes the removal of an electron from the
TQD with N+1 electrons back to the same lead r.

At equilibrium, the probabilities P	N
’s are given by

P	N

eq =

exp�−
E	N

D − �0N

kBT
�

Z
, �10�

where Z is the grand partition function of the TQD molecule
and �0 is the chemical potential at equilibrium. When a finite
bias is applied between the left and right leads, the time
evolution of the probabilities P	N

is given by the following
set of master equations:

dP	N

dt
= �

	N+1

�
r=L,R

P	N+1
�1 − fr�E	N+1

D − E	N

D ��
r�	N,	N+1�

− �
	N+1

�
r=L,R

P	N
fr�E	N+1

D − E	N

D �
r�	N,	N+1�

+ �
	N−1

�
r=L,R

P	N−1
fr�E	N

D − E	N−1

D �
r�	N−1,	N�

− �
	N−1

�
r=L,R

P	N
�1 − fr�E	N

D − E	N−1

D ��
r�	N−1,	N� ,

�11�

where 
r=��
r
�. The first and third terms are the contribu-

tion from the transitions 	N�1→	N, and the second and
fourth terms are the contribution from the transitions 	N
→	N�1. For N=0�N=6�, the summations over 	N−1�	N+1� is
absent in the master equation. By solving these master equa-

tions with steady-state condition
dP	N

dt for all 	N, we can
uniquely determine the steady-state probabilities �see Appen-
dix B for details�.

III. CONDITIONS FOR TRANSPORT THROUGH
A QUANTUM MANY-BODY SYSTEM

Before we move on to the numerical results, we discuss
the conditions required for transport through a general quan-
tum system connected by two leads at both ends. We will call
the general quantum system “dot” in this section. The trans-
port in general involves multiple many-body quantum states
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and cannot be reduced to a single electron description. Trans-
port channels for this many-body, many-channel transport in
the sequential tunneling regime will be defined and general
conditions for transport will be given. We will assume zero
temperature to simplify the discussion.

Without source-drain bias �Vsd=0�, the dot will be in
equilibrium with the leads with chemical potential �0. The
number of electrons in the dot at equilibrium will be deter-
mined by

�D�N − 1� � �0 � �D�N� , �12�

where �D is the chemical potential of the dot defined as

�D�N� 
 E	N+1
GS

D − E	N
GS

D , �13�

for the N-electron ground state 	N
GS and �N+1�-electron

ground state 	N+1
GS . The dot will be in the ground state of

N-electron system, 	N
GS. Once we apply a bias, transition

from the ground state 	N
GS to other states will occur. By suc-

cession of such transitions, electrons can move from one lead
to the other lead. During this process many of the dot states
will be accessed and on the average we can assign a prob-
ability that the dot will be in each many-body state. Prob-
abilities will change in time initially, but reach stationary
values at steady state.

To be specific, let us assume that we apply a bias Vsd
between the two leads such that �L=�0+eVsd /2 and �R
=�0−eVsd /2. For a transition from an N-electron state 	N to
an �N+1�-electron state �N+1 by adding an electron in the dot
from lead r=L ,R to occur, the incoming electron must have
the energy of E�N+1

D −E	N

D . Electrons in the lead r have ener-
gies below the chemical potential �r and therefore the con-
dition E�N+1

D −E	N

D ��r must be satisfied. In addition, the
states 	N and �N+1 must be connected by adding an electron
from the lead r, i.e., 
r�	N ,�N+1��0. Similarly, a transition
from an �N+1�-electron state �N+1 to an N-electron state 	N
by moving an electron from the dot to the lead r is allowed if
E�N+1

D −E	N

D ��r and 
r�	N ,�N+1��0. In this case, there
must be an empty state with energy E�N+1

D −E	N

D in the lead r.
We define a set of two successive transitions

	N→
L

�N+1→
R

	N� or �N+1→
R

	N→
L

�N+1

as a transport channel if �i� these transitions are allowed and
�ii� the initial state 	N or �N+1 is either the ground state or
accessible from the ground state by successive allowed tran-
sitions. The L or R on top of the arrows means the transition
is allowed by connection to the left or right lead. If two states
are involved in a transport channel such as 	N→�N+1→	N,
we will simply call the pair �	N ,�N+1� a transport channel.
We will define any state that participates in one or more
transport channels an active state. In most cases, if there are
one or more transport channels, the current flows through the
system. Exception is when there is a trap state. A state �N is
defined to be a trap state if �i� �N is accessible from the
ground state through successive allowed transitions and �ii�
the transition �N→	N�1 is not allowed for any active state
	N�1. When we apply a bias to the system, the probability of
the trap state monotonically increases in time and in the

steady-state condition, the system will be completely in the
trap state and current can no longer proceed. The �1,1� triplet
state in DQD spin-blockade system12 with forward bias is an
example of trap state. To summarize, the general conditions
for transport via sequential tunneling are �i� there is at least
one transport channel and �ii� there is no trap state.

We can understand the expression for total current in Eq.
�7� in terms of transport channels, active states and trap
states. If there is no trap state, then each active state will
have a finite probability. The electron spectral function �Eq.
�8�� is a sum over all transitions from an active state 	N to
any state 	N+1. For the total current, this electron spectral
function is weighted by the Fermi-Dirac function. At zero
temperature, this weighted spectral function is a sum over all
transitions only between active states. Similarly, the hole
spectral function is a sum over all transitions from an active
state 	N+1 to any N-electron state. It is weighted with 1− fr
and the weighted hole spectral function is a sum over all
transitions between active states. If there is a trap state �N,
then only P�N

�=1� is nonzero and the weighted spectral func-
tion is a sum over transitions from �N to other active states.
Since there is no allowed transition from �N to any active
state by definition of the trap state, the weighted spectral
function is zero and there is no current.

IV. RESULTS

We use the effective Rydberg Ry and the effective Bohr
radius aB of the host semiconductor material as our units for
energy and length, respectively. For GaAs, Ry=5.93 meV
and aB=9.79 nm. The three QDs are located at the vertices
of a equilateral triangle and the interdot distance is 6.25. The
magnetic field is measured with the number of flux quanta
�B through the triangle. We use parameters Ui=U=2.5, Vij
=V=0.5, tij =−t=−0.05, for all i and j. These parameters are
in the same range as those obtained from experiment in Ref.
16. The interdot distance was chosen to be smaller to make
the Zeeman effect more prominent. The tunneling strengths
tL and tR in the leads are assumed to be large so that the
density of states of the leads are nonzero in a wide range of
energy. We use tL= tR=−4.0 in the calculation. The current is
calculated in units of I0=e�tLD�2 /��tL�, and conductance in
units of G0=e2�tLD�2 /��tL�. We assume that tLD= tRD=−0.002
and that they are small enough to justify the sequential tun-
neling picture. In these effective units, the current and the
conductance do not depend on the dot-lead tunneling tLD and
tRD. The effective g factor is taken to be −0.44. The chemical
potentials of each leads are �L=�0+eVsd /2 and �R=�0
−eVsd /2. We set the equilibrium chemical potential �0 to be
zero. All the calculations are done at temperature T=0.001.

A. Quadruple point with a trapped hole

We consider a quadruple point where a hole is trapped in
dot 2. A hole in the TQD is defined as the absence of an
electron with respect to the fully occupied state with six elec-
trons. At this quadruple point, the four resonant electronic
charge configurations are �2,1,2�, �1,1,2�, �2,0,2�, and �2,1,1�.
If we neglect the tunneling between the constituent dots of
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the TQD molecule, the QP can be determined by equating
the energies of the four charge configurations,

E�2,1,2� = E�1,1,2� = E�2,0,2� = E�2,1,1� 
 EQP.

�14�

With �1=�3=� and �2=�+�, the energies of the four con-
figurations are

E�2,1,2� = 5� + � + 2U + 8V , �15�

E�1,1,2� = E�2,1,1� = 4� + � + U + 5V , �16�

E�2,0,2� = 4� + 2U + 4V , �17�

and from Eq. �14� we obtain �=−U−3V and �=U−V. At
this classical QP the level energies of the QDs are

�1 = �3 = − U − 3V , �18�

�2 = − 4V , �19�

and the total energy is

EQP = − 2U − 8V . �20�

When we have tunneling between the QDs, the charge con-
figurations in terms of the population of each individual dots
are not eigenstates of the coupled TQD molecule system.
The quadruple points are defined then as the point where all
the resonant charge configurations have the same probabili-
ties, which can be determined numerically. The QP with a
trapped hole where the four electronic charge configurations
�2,1,2�, �1,1,2�, �2,0,2�, and �2,1,1� have same probabilities
corresponds to the level energies �1=�3=−4.05 and �2
=−2.095 with �0=0. Notice that these values are quite close
to the values of the classical QP because the tunneling t is
relatively small compared to the Coulomb interaction param-
eters U and V.

In terms of hole occupation numbers, the charge configu-
rations �0,1 ,0�h, �1,1 ,0�h, �0,2 ,0�h, and �0,1 ,1�h are de-
generate where �N1 ,N2 ,N3�h= �2−N1 ,2−N2 ,2−N3�. The
lower part of the energy spectrum of the TQD at this QP is
shown in Fig. 2�a�. The two thin black dotted lines are the
energy levels of spin-up and spin-down states of the trapped
hole. There are no AB oscillations for the single-hole states
because it is localized in dot 2. For two-hole states, neglect-
ing very high-energy states consisting mostly of configura-
tions �2,0 ,0�h, �0,0 ,2�h, and �1,0 ,1�h, we have nine two-
hole states �three singlet and six triplet states�. Two-hole
singlet states �red solid curves� show strong AB oscillations
since they consist of three configurations �1,1 ,0�h, �0,2 ,0�h,
and �0,1 ,1�h. That is, there is one hole trapped in dot 2 and
an extra hole moves around the three dots. Two-hole triplet
states mainly consist of only two configurations �1,1 ,0�h and
�0,1 ,1�h because �0,2 ,0�h configuration can be only singlet
due to the exclusion principle. Therefore, triplet states �blue
dashed curves� show only small AB oscillations which can
be ascribed to higher energy triplet configuration �1,0 ,1�h.
This suppression of AB oscillation in triplet states also oc-
curs at the QP with a trapped electron in dot 2.31 The energy
spectrum of the TQD with a trapped hole has two main dif-

ferences compared to the TQD with a trapped electron. First,
at zero magnetic field, two-hole spin-singlet and triplet states
are almost degenerate. Second, the phase of the AB oscilla-
tion of the singlet state is shifted by �. Without Zeeman
splitting, these differences would lead to � phase-shifted AB
oscillations with less amplitudes in current because the trip-
let transport channel will have finite contribution with very
small AB oscillation. With Zeeman splitting, the single-hole
and two-hole ground states are on resonance only at zero
magnetic field. We can tune the relative energy difference
between two-hole �i.e., four-electron� and single-hole �i.e.,
five-electron� states by changing the overall energy shift �0.
The two-hole states obtain 4�0 while single-hole states ob-
tain 5�0. Therefore, single-hole states gain additional energy
�0 with respect to two-hole states. It is easier to understand
how the transport channels contribute to the total current if
the one-hole and two-hole states are energetically separated.
Figure 2�b� is the energy spectrum with �0=−0.15, where the
single-hole states are well below the two-hole states. Inter-
esting phenomena such as negative differential conductance
and spin-selective AB oscillations occur in this system. We
will present results for this system at various biases and mag-
netic fields.
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FIG. 2. �Color online� �a� Energy spectrum at the QP where a
hole is trapped in dot 2. Four charge configurations �0,1 ,0�h,
�1,1 ,0�h, �0,2 ,0�h, and �0,1 ,1�h in terms of the hole occupation
numbers have the same probability at zero magnetic field. Black
dotted curves are for single-hole states with spin up and down. Red
solid �Blue dashed� curves are spin-singlet �spin-triplet� states for
two-hole systems. �b� Energy spectrum with the overall shift �0

=−0.15. By changing �0, the single-hole states move upward for
positive �0 and downward for negative �0 with respect to the two-
hole states.
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B. Spectral functions and transport channels

To explain how the current is related to the spectral func-
tions and the transport channels, we choose a specific case
with �B=3.3 and eVsd=0.3. The system is schematically
given in Fig. 3. The single-hole states with spin up ��↑� and
down ��↓� are the lowest levels. For two-hole states, 	S is
spin singlet and 	T

��,0� is spin triplet with total Sz= �1,0,
respectively. Solid black �red� arrows represent transitions
from two-hole states to single-hole states by a spin-down
�spin-up� electron moving from the left lead to the TQD
system. These transitions satisfy

E�
D − E	

D � �L = �0 +
eVsd

2
= 0.15, �21�

and 
L�	 ,���0. 	T
�−� and other higher energy levels are out-

side the transport window and are not accessed during trans-
port �e.g., transitions �↓→	T

�−� and �↑→	T
�−� are not allowed

and therefore 	T
�−� is never populated�. Notice that the tran-

sition 	T
�+�→�↓ is energetically possible but not allowed by

spin-blockade since adding a single electron cannot change
the total spin Sz from +1 to −1 /2. The transition from 	T

�0� to
�↑ can also occur by adding an electron from the right lead
since the incoming electron must have energy −0.17, which
is below the chemical potential of the right lead �R=−0.15.
This is the only transition that transports an electron from the
right lead to the TQD, and is represented as a dotted red
arrow pointing downward. Dotted black �red� arrows point-
ing upward represent transitions from single-hole states to
two-hole states by a spin-down �spin-up� electron moving

from the TQD system to the right lead. These transitions
satisfy

E�
D − E	

D � �R = �0 −
eVsd

2
= − 0.15, �22�

and 
R�	 ,���0. There are four pairwise transport channels
�	S ,�↑�, �	S ,�↓�, �	T

�+� ,�↑�, �	T
�0� ,�↓� as well as other trans-

port channels such as �↑→	S→�↓, etc. There is no trap
state in this case.

The contribution of each transition to the current can be
understood by spectral functions. Figure 4 shows the spectral
functions for this system. Due to the symmetry of the system
and the assumption tLD= tRD, spectral functions for i=1 and
i=3 are the same. Spectral functions are sum of delta func-
tions and the coefficients of each delta-function are plotted
here. �a� is the electron spectral function and �b� is the hole
spectral function. Electron �hole� spectral function shows

FIG. 3. �Color online� Schematic describing the transitions at
�B=3.3 and eVsd=0.3. �’s are single-hole levels with spin up and
down, and 	’s are two-hole levels. 	S is spin singlet and 	T

��,0� are
spin triplet. Solid �dotted� arrows are transitions allowed by connec-
tion to the left �right� lead. Transitions represented by downward
arrows are from a two-hole state to a single-hole state by adding an
electron from the lead, and upward transitions are from a single-
hole state to a two-hole state and emit an electron to the lead. The
black �red� color represents that the spin of the electron transporting
in the transition is down �up�. Energies and the probabilities of each
level are also given for reference.
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FIG. 4. �Color online� Spectral functions at �B=3.3 and eVsd

=0.3. Black �red� columns are for �=↓ ��=↑�. �a� Electron spectral
function, Ae�N=4; i ,� ;��. �b� Hole spectral function, Ah

�N=5; i ,� ;��. i=1 or 3 gives the same spectral functions since we
have symmetric system and assumed tLD= tRD. �c� and �e� are elec-
tron spectral functions weighted by the Fermi function fL and fR

respectively, and represent allowed transitions from a two-hole state
to a single-hole state by an electron moving from the lead to the
TQD system. �d� and �f� are hole spectral functions weighted by
1− fL and 1− fR, respectively, and represent allowed transitions
from a single-hole state to a two-hole state by an electron moving
from the TQD system to the lead. No transition moves an electron
from the TQD to the left lead and therefore there is no visible peaks
in �d�. These weighted spectral functions show all the transitions
during the transport depicted by arrows in Fig. 3.
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transitions from any active two-hole �single-hole� state to
any single-hole �two-hole� state, not necessarily only to ac-
tive states. Note that, since not all the two-hole states are not
active, electron spectral function has fewer spectral lines
than hole spectral function. Not all these transitions actually
occur during the transport. Only those transitions within the
transport window occur and contribute to the current. For the
current from the left lead to the TQD, the summation is over
the electron spectral function weighted by the Fermi function
of the left lead. Black �red� columns in �c� show the weighted
electron spectral function for adding a spin-down �spin-up�
electron, which correspond to the solid black �red� arrows in
Fig. 3. Transitions 	T

�+�→�↑ and 	T
�0�→�↓ are induced by

spin-down electrons with same energy and the highest black
column represents sum of these two. This weighted electron
spectral function is the same with the bare spectral function
in the energy range shown here because all the transitions
from active two-hole states to any of the �↑ and �↓ are in the
transport window. For the current from the TQD to the left
lead, the hole spectral function is weighted by 1− fL ��d��.
This weighted hole spectral function is zero since no transi-
tion from a single-hole state to a two-hole state emits an
electron with energy larger than the chemical potential of the
left lead �there is no solid arrows pointing upward in Fig. 3�.
For the current from the TQD to the right lead, we need to
sum over the hole spectral function weighted by 1− fR. Black
�red� columns in �f� correspond to the dotted black �red�
arrows pointing upward in Fig. 3. For the current from the
right lead to the TQD, the electron spectral function is
weighted by fR ��e��, which has only one small peak corre-
sponding to the transition 	T

�0� to �↑ represented by the dotted
red arrow pointing downward in Fig. 3. These weighted
spectral functions show the transitions between active states
�i.e., transitions shown in Fig. 3� and only these transitions
form transport channels and contribute to the current. The net
current from the left lead to the TQD IL→D can be obtained
by summing the peaks in �c� and the net current from the
TQD to the right lead ID→R is the sum of the peaks in �f�
minus the peak in �e�. The net currents IL→D and ID→R are the
same, satisfying the steady-state condition.

C. Negative differential conductance

When we increase the bias, the transport window expands
and more transport channels are involved in the transport.
Whenever a new transport channel is introduced, the prob-
abilities of each state must be redistributed and the spectral
functions and the current change accordingly. In the range of
biases where no new transport channel is introduced the cur-
rent remains flat and therefore nonzero differential conduc-
tance signifies introduction of new transport channel. Figure
5 shows how the currents ��a� and �d��, differential conduc-
tances ��b� and �e��, and the probabilities ��c� and �f�� of each
states change for the same system as in Fig. 2�b� as we
increase the bias at two different magnetic fields �B=0 and
3.3. At zero magnetic field ��a�–�c��, the single-hole state is
doubly spin-degenerate and the current changes when a two-
hole state enters the transport window as we increase the
bias. At each current plateaus the probabilities of each active

states are the same, which results from the assumption that
tLD= tRD. The differential conductance peaks at the energy
differences between two-hole states and the single-hole
ground state. At finite magnetic field �B=3.3 ��d�–�f��, the
spin-degeneracy of the single-hole states is lifted and we
have multiple N- and �N+1�-particle states. The current
changes whenever additional transport channel is introduced
by increasing bias, which is more complicated than at zero
magnetic field since the two single-hole levels have different
energies. The probabilities of each active state at current pla-
teaus are not the same in this case. In most cases the addi-
tional transport channel results in the increase in current, but
sometimes it leads to the decrease in the current as is the case
for the decrease in current at eVsd�0.7 for �B=0 �Fig. 5�a��,
and at eVsd�0.62 and 0.69 for �B=3.3 �Fig. 5�d��. This can
be explained as a result of the interplay between the different
coupling strength 
r�	 ,�� for singlet and triplet states and
the probability redistribution of many-electron states with
increased bias. The single-hole states are more strongly
coupled to the triplet two-hole states than to the singlet two-
hole states �
r is larger for the triplet� because the triplet
states consist of two configurations ��1,1 ,0�h and �0,1 ,1�h�
while the singlet states consist of three configurations
��1,1 ,0�h, �0,2 ,0�h, and �0,1 ,1�h�, and the configuration
�0,2 ,0�h is not connected to the single hole configuration
�0,1 ,0�h by adding or subtracting a hole from the leads. If
increasing the bias makes the singlet state above the triplet
states become an active state, we have more transport chan-
nels. But the probabilities of all the active states will be
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FIG. 5. �Color online� Currents, differential conductance, and
probabilities as functions of the bias at two different magnetic fields
�B=0 ��a�–�c�� and �B=3.3 ��d�–�f��, for the same system as in Fig.
2�b�. For the currents and conductances, black solid curves are the
total currents or conductances and red dashed �blue dotted� curves
are for spin down �up� components. For the probabilities, black
dotted curves are for single-hole states and red solid �blue dashed�
curves are for spin-singlet �spin-triplet� states.
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redistributed and the triplet active states will have less prob-
abilities. If the current decrease due to the reduction of the
triplet probabilities is larger than the current increase due to
the introduction of new transport channels involving the sin-
glet state, the total current decreases as we increase the bias.

Figure 6 shows the electron spectral functions weighted
by fL before ��a� and �c�� and after ��b� and �d�� the current
decrease. The electron spectral functions weighted by 1− fL
are all zero for this case, and the current is simply propor-
tional to the sum of the heights of all columns in the figure.
At zero magnetic field ��a� and �b�� we show only spin-down
component because spin-up component is the same due to
the spin degeneracy. Before the current decrease, at eVsd
=0.6 ��a��, the two high columns correspond to the transi-
tions from spin-triplet states to single-hole states and the two
small columns which almost overlap with one of high col-
umn are from the transitions from spin-singlet states. The
three columns are very close together due to the singlet-
triplet degeneracy of the two-hole system. After the current
decrease, at eVsd=0.8 ��b��, there is additional peak at around
��−0.35, which correspond to the new allowed transitions
involving the higher singlet state. Notice that the decrease of
the two peaks of triplet transitions is bigger than the new
singlet peak, which leads to the negative differential conduc-
tance. At finite magnetic field ��c� and �d��, spin degeneracy
is lifted and there are more peaks in the weighted spectral
function. The higher peaks correspond to transitions from
triplet states and lower peaks correspond to transitions from
singlet states. At eVsd=0.8 ��d��, the two new peaks corre-
spond to the transitions from the third singlet state to the two

single-hole states. Once again, the peaks of triplet transport
channels decrease and the total current decreases.

D. Spin-selective Aharonov-Bohm oscillations

The different oscillatory behavior of singlet and triplet
states in the magnetic field can lead to spin-dependent trans-
port phenomena. Left panels of Fig. 7 ��a�–�c�� show the
current, current polarization, and differential conductance as
a function of the magnetic field at eVsd=0.25 for the same
system as in Fig. 2�b�. At this bias, the lowest singlet two-
hole state �	S� can form transport channels with both the
spin-up ��↑� and spin-down ��↓� single-hole state at lower
magnetic fields. �↑ and �↓ have the same probabilities in this
regime and the spin-up and spin-down components of cur-
rent are the same and the spin-polarization of the current is
zero. The AB oscillation makes the singlet state 	S oscillate
in and out of the transport window, which leads to the oscil-
lations in current and conductance. At higher magnetic fields,
the spin-triplet state with Sz=+1 �	T

�+�� comes into the trans-
port window with respect to �↑ and �↓. Since �↓ has Sz
=−1 /2, it cannot form a transport channel with 	T

�+� due to
spin blockade. Therefore, the transport channel �	T

�+� ,�↑�
which carries spin-down current dominates the transport at
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FIG. 6. �Color online� Electron spectral functions weighted by
fL before ��a� and �c�� and after ��b� and �d�� current decrease. At
zero field ��a� and �b��, spin-down and spin-up components are the
same due to the spin degeneracy. At finite field ��c� and �d��, more
peaks appear due to the lifting of the spin degeneracy. The intro-
duction of the transport channels involving the high-energy singlet
state as the bias increases leads to redistribution of the probabilities
and reduction of the current through the triplet transport channels
which are dominant channels. The total current decreases since the
decrease through the triplet transport channels is bigger than the
increase through the new singlet transport channels.
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high magnetic fields. At higher bias, with eVsd=0.3 �Figs.
7�d�–7�f��, the pair of states �	T

�+� ,�↑� always forms a trans-
port channel and spin-down current is dominant at all mag-
netic fields. The singlet state 	S can form transport channels
with both �↑ and �↓ states and contributes equally to the
spin-up and spin-down currents. The formation of transport
channels involving spin-singlet 	S leads to probability redis-
tribution and decreases the probability of the triplet state
	T

�+�. Therefore, we have higher current polarization when the
singlet state 	S does not participate in the transport and vice
versa.

Figure 8 summarizes both the negative differential con-
ductance and the spin-selective AB oscillations at finite bias
for the system in Fig. 2�b�. �a� and �b� show the spin-down
and spin-up component of the differential conductance as
functions of magnetic field and the bias, which clearly show
different AB oscillations for spin-down and spin-up conduc-
tance. �c� is the total differential conductance and the dark
trace at large bias due to introduction of transport channels
involving the high-energy singlet state indicates the current
decrease for increasing bias. Since nonzero differential con-
ductance indicates introduction of new transport channels
and the bias for new transport channel corresponds to the
energy difference between the two constituent states of the
new transport channel, the differential conductance can be
used as a spectroscopic tool. Comparing Figure 8�c� with the
energy spectrum Fig. 2�b�, we can see the resemblance. Dif-
ferences are that singlet levels are split into two and three
Zeeman-split triplet levels give only two nonzero traces in
differential conductance G. The lowest singlet state forms
transport channels with �↑ and �↓ at the same bias, as we
mentioned earlier, and therefore leads to only one nonzero
trace in G, while higher singlet states can form transport
channels with �↑ and �↓ at different bias and hence two
nonzero traces in G. For the triplet states, triplet states with
Sz=+1�−1� can not form transport channel with �↓ ��↑� due

to spin blockade and therefore we have only two nonzero
traces in G for three triplet states.

To compare with the spin-selective AB oscillations of
TQD system with a trapped electron in the linear response
regime,31 we consider the TQD slightly off the exact QP with
a trapped hole. Figure 9 shows the spin-selective AB oscil-
lations with �0=−0.025 in the linear response regime where
eVsd=1.0�10−4. The spin-up single-hole state crosses the
singlet two-hole state several times until it crosses with the
triplet state at higher magnetic field. The repeating conduc-
tance peaks are for spin-up current and the large peak at
strong enough magnetic field is for spin-down current. Com-
pared to the case at the QP with a trapped electron, the be-
haviors of spin-up and spin-down currents are reversed since
the transport of a hole with spin-up �spin-down� corresponds
to the transport of an electron with spin-down �spin-up� in
the opposite direction. The phase of the oscillation is also
shifted by � due to the � phase shift of oscillations of the
singlet states. The current is ultimately suppressed at very
high field where the triplet state is the ground state and
spin-up single-hole state is outside of the transport window.

V. CONCLUSIONS

We presented a theory of the tunneling transport through a
TQD around a QP with a trapped hole in dot 2 where spin-
selective AB oscillations occur. Spin singlet and triplet states
with two holes at this QP were shown to be degenerate at
zero magnetic field, which is in contrast to the electron case
studied previously.31 A detailed description of the formalism
for the transport calculation and general conditions for trans-
port through multiple many-body states were given. It was
shown that the interplay between the introduction of new
transport channels and the probability redistribution can lead
to negative differential conductance and that the differential
conductance can be used as a spectroscopic tool. The trans-
port in the magnetic field is sensitive to the spin of the car-
riers and the spin structure of the TQD system in a triangular
geometry due to the strong Coulomb interaction and the in-
terference effects. This spin-selective AB oscillations show
different behavior in the linear response regime and with a

FIG. 8. Differential conductance as a function of the magnetic
field and the bias for the system in Fig. 2�b�. �a� and �b� show
spin-down and spin-up components separately and �c� shows the
total differential conductance.
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shows the energy spectrum which is shifted from the QP by �0
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finite bias. The TQD system with singly connected leads can
be considered as a minimal quantum dot network �QDN�
circuit and the formalism developed here can be used for
general QDN circuits. The multichannel transport can be
analyzed using the spectral functions of the QDN and trans-
port channels formed by many-body states.
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APPENDIX A: NONINTERACTING
ONE-DIMENSIONAL CHAIN

The leads are described by the Hamiltonian of noninter-
acting one-dimensional chains

Ĥr = �
m

�
�

�0
rcm�

† cm� + �
m

�
�

�trcm�
† cm+1� + H.c.� ,

where �0
r is the level energy of each site and tr is the tunnel-

ing between sites in lead r=L ,R. m is from −Na to −1 for the
left lead and from 1 to Na for the right lead. The eigenstates
of this tight-binding chain is

�k�
 =
1

�Na
�
j=1

Na

eikaj�j�
 , �A1�

where k=2n� / �Naa� with n=0,1 ,2 , . . . ,Na−1. The eigen-
values are spin degenerate and given by

�k
r = �0

r + 2tr cos ka , �A2�

and the density of states per site for each spin is

�r���� =
1

2��tr�sin k�a
��2�tr� − �� − �0

r �� , �A3�

where � is the step function and k� is determined by �=�0
r

+2tr cos�k�a�.
The TQD and the leads are connected by tunneling

Hamiltonian

ĤrD = �
�

�trDcm0�
† di0� + H.c.� , �A4�

where m0 �−1 for r=L and 1 for r=R� and i0 �1 for r=L and
3 for r=R� are the two adjacent sites of the lead and the dot
connected by the tunneling and trD is the tunneling element
connecting the two sites. Using the eigenstates of the lead
chains, we obtain

ĤrD = �
�

�
k

�t̃rD�k�ck�
† di0� + H.c.� , �A5�

where

t̃rD�k� 

trDe−ikam0

�Na

. �A6�

APPENDIX B: SOLUTION OF THE RATE EQUATION
AT THE STEADY STATE

In this appendix, we present a method to find the steady-
state solution of the rate equation. The master equation in
matrix form is give by

dP

dt
= MP · P , �B1�

where the matrix MP is defined by Eq. �11�. The initial prob-
abilities at t=0 are given by equilibrium values

P	N
�0� = P	N

eq =

exp�−
E	N

D − �0N

kBT
�

Z
, �B2�

For stationary cases �t→��, dP	N
/dt=0 for all 	N. Then we

obtain a system of linear equations for 	N

MP · P = 0. �B3�

This equation by itself does not uniquely determine P	N
be-

cause the matrix MP is singular. We can see this by the fact
that the summation of all the elements of MP is zero and
therefore the set of equations in Eq. �B3� are not linearly
independent. We need more conditions to uniquely determine
the steady-state solution. One constraint is the normalization
condition of the probabilities,

�
N

�
	N

P	N
= 1. �B4�

If all the states take part in the transport, then Eqs. �B3� and
�B4� would uniquely determine the steady-state probabilities.
But if some states do not participate in the transport, we need
more conditions �if we consider Eq. �B3� as an eigenvalue
problem with eigenvalue 0, the eigenvalue 0 can be degen-
erate�. Considering that the master equation gives unique so-
lution with the initial condition, we need to make use of this
initial condition to solve steady-state solution in this case.

For this, let us use the singular value decomposition
�SVD� of MP.

MP = UDVT, �B5�

where U and V are orthogonal matrices and D is a diagonal
matrix. The diagonal elements of D are called singular val-
ues. All singular values are zero or positive and we assume
that the diagonal elements of D are in descending order. The
number of zero singular values �N0� is the dimension of the
null space of MP, and the last N0 column vectors of V form
a basis set for the null space. If only one singular value is
zero, the last column vector of V defines the one-
dimensional null space of MP and the normalization condi-
tion would be enough to uniquely determine the probabili-
ties. But, in general, there can be more than one 0 singular
values. For NP�NP matrix MP, NP=NR+N0 where NR is the
dimension of the range and N0 is the dimension of the null
space. Eq. �B1� can be written as
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dz

dt
= Dy , �B6�

where

z 
 UTP, y 
 VTP . �B7�

Separating the null space �B� and its complementary space
�A�, it becomes

d

dt
�zA

zB
� = �DA 0

0 0
��yA

yB
� ⇒

dzA

dt
= DAyA,

dzB

dt
= 0.

�B8�

DA is a diagonal matrix whose diagonal elements are the
nonzero singular values of MP. Since time derivative of zB is
zero, we obtain

zB�t� = zB�0� �B9�

at all time t. At t→�, all time derivatives are zero and we
obtain

dzA�t → ��
dt

= DAyA�t → �� = 0, �B10�

⇒yA�t → �� = 0, �B11�

since DA is a diagonal matrix with all nonzero diagonal ele-
ments. Using

y = VTP = VTUz 
 Wz , �B12�

⇒�yA

yB
� = �WAA WAB

WBA WBB
��zA

zB
� , �B13�

we get

yA��� = WAAzA��� + WABzB��� = 0 �B14�

and we obtain an equation for zA���

WAAzA��� = − WABzB��� �B15�

⇒zA��� = − �WAA�−1WABzB�0� , �B16�

where we used the result that zB is constant in time. We can
prove that �WAA�−1 exists as follows. Since MP has a null
space of dimension N0, MP has eigenvalue 0 of degeneracy
N0. From Eq. �B5�, we have

UTMPU = DW = �DAWAA DAWAB

0 0
� . �B17�

Since UTMPU has also eigenvalue 0 of degeneracy N0,

det�UTMPU − �I� = �N0f��� , �B18�

where f��� is a polynomial with f�0��0. Using Eq. �B17�,

det�DW − �I� = �N0 det�DAWAA − �IAA� �B19�

and �=0 is not a solution of det�DAWAA−�IAA�=0. There-
fore,

det�DAWAA� = det DA det WAA � 0, �B20�

and, since DA is a diagonal matrix with nonzero elements, we
obtain det WAA�0 and �WAA�−1 exists. Once we have z���,
we can find P at steady state using

P�t → �� = Uz��� . �B21�

The normalization condition is automatically satisfied in this
method because the master equation conserves the normal-
ization.
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